
Security Cameras:
Visually
Vigilant

1.
WHAT’S THE
PROBLEM

Big Picture
▪ Develop an application that allows a user to

graphically illustrate the positioning of security
cameras to view all areas of an enclosed
location with obstructions.

3

Smaller Details

▪ Allow the user to manipulate the space
▫ Be able to retain it

▪ Allow user to gain visual feedback of coverage
from placement of a camera

▪ Allow movement of a camera, and update
visuals accordingly

4

Smaller Details

▪ Calculate and Display % of total coverage of
room

▪ Consider placement constraints of camera
▪ Allow user to be able to tell if a camera can see

a point
▪ Compute minimum number of cameras

necessary to cover room

5

What I did

▪ C# Program
▫ Using Windows Presentation Forms

▪ Classes:
▫ Room

▫ Camera
▫ Walls

▫ BitmapPixelMaker

6

What I did

▪ Allow user to draw room via wall building
▪ File options for room

▫ Start New Room
▫ Save/Load Room
▫ Print as png
▫ Clear current Room
▫ Exit

7

What I did

▪ Cameras can be placed, and moved within the
walls

▪ Calculated Area of Room
▪ Computed minimum number of cameras

necessary
▪ Allow user to “mute” camera

8

Exceptions
Calculate Location and Cameras of Object
Not 100% sure if I got this or not. I showed the
visuals of each camera over each space it can
see. However, if the user were to hover their
mouse over a pixel, it does not show which
camera numbers can see that space.

Optimal Camera Placement
Crafting an algorithm to calculate the minimum
number of cameras is relatively straightforward
based on the number of walls in the room.
Calculating the locations of these optimal points
is not.

Disclaimer: These Exceptions would make for some great possibilities for the next poor soul willing
student to improve upon this project in future years. I may even continue to tinker with some of
these on my own after graduation.

9

Exceptions
Anytime multiple actions are stacked on top of
each other
Loading a new document after clicking the wall
option allows you to draw walls over an existing
room, which isn’t the end of the world, just not
what I was aiming for. However, this causes
cameras to color outside the room. Also backing
up on a wall and then opening a new room
allows you to draw two walls simultaneously.

Update movement and placement of cameras
in real time
I almost tanked out my work laptop several
times throughout this, and blew out the stack
many more. The heft of the algorithms and the
number of them to build the rooms and adjust
cameras requires serious horsepower, as it is all
but in name ray tracing. I opted for the update
in “real time” option.

Disclaimer: These Exceptions would make for some great possibilities for the next poor soul willing
student to improve upon this project in future years. I may even continue to tinker with some of
these on my own after graduation.

10

Began playing with how to color
from a camera
This included how to create a
line, and how to draw from a
point.
This was eventually done by
using supercover_line, some
angles, and a WriteableBitmap
which was modified pixel by
pixel.

Methods

11

Eventually used the
WriteableBitmap functions to
deal with color collision
This structure carried me
through most of the project,
and hasn’t needed to be
changed much since this was
completed.

Methods

12

Used MouseEvents to create
Walls and place Cameras
Uses color of the pixel in order
to determine feasibility of
placement as well as show field
of view.

Methods

13

Methods
Created Menu
This menu drives the
program, containing
buttons which all lead
to the functions which
build this program.

14

Issues
Aside from almost
bricking my computer, I
ran into a lot of issues
of Out of Bounds on
calculations. Stack
overflows were
common as well.

15

2.
DEMONSTRATIONS

17

https://docs.google.com/file/d/1oGu-zr6eL9MIJ2Zko59-OekT764y7pmH/preview

18

https://docs.google.com/file/d/1r3L1RcWpSqkOKkNJBhTM8BCXRj10Ozsb/preview

19

20

21

https://docs.google.com/file/d/1blmSuoNCgB9hWrpSdM4r4qwb67BuDp8-/preview

CREDITS

▪ Microsoft Documentation
▫ Understanding built-in C# classes and

hierarchy
▪ Stack Overflow

▫ Little, technical problems, that someone else
had before me

22

CREDITS

▪ C# Helper
▫ Understanding the power of the language,

created the bulk of BitmapPixelMaker
▪ RedblobGames

▫ Documented and implemented
supercover_line

▪ Dr. Pankratz and Dr. McVey
23

CREDITS

Special thanks to all the people who made and
released these awesome resources for free:
▪ Presentation template by SlidesCarnival
▪ Photographs by Unsplash

24

http://www.slidescarnival.com/
http://unsplash.com/

THANKS!
Any questions?
You can find me at:
mark.nichols@snc.edu

25

